Chat with us, powered by LiveChat Lab report | Coms Paper
+1(978)310-4246 credencewriters@gmail.com
  

Hello thereI need help writing my lap report for the experiment Readial HeatI am attaching all the information that should be included in the lab report (full report) please follow the same sample report in order I get better gradein the sample report you will see some comments in red, it is the professor comments that should be followed.the file 1 is the sample reportexcel sheet (data)lap experiment procedureplease check the spelling once you writeME304 Mechanical Measurements II
Experiment 5: Radial Heat Conduction
Objective
To measure temperature distribution for transient and steady-state 1-D heat conduction in a
cylindrical wall and to determine the thermal conductivity k of the disk material.
Theory
When the inner and outer surfaces of a thick walled cylinder are each at a different uniform
temperature, heat flows radially through the cylinder wall. The heat conduction in this case is
governed by Fourier’s law for one-dimensional radial flow:
Q = −kA(dT dR) = −2Rhk (dT dR) (here h is the cylinder height, or thickness)
The disk can be considered to be constructed as a series of successive layers in the wall. The heat
conducted across each layer must be constant if the flow is steady. But since the area to the
successive layers increases with radius, the temperature gradient must decrease with radius. This
leads to the following logarithmic temperature distribution along the radial direction:
Q ln (Ra Rb ) = −2hk (Ta − Tb )
where Ta is the temperature at any radius Ra and Tb is the temperature at any radius Rb. Note that the
equation is valid for any pair of radii within the radial domain. Thus, if two temperatures at two known
radial positions are measured, the thermal conductivity k of the material can be found as:
k=
Q ln (Rb Ra ) − Q ln Rb − ln Ra
=
2h(Ta − Tb ) 2h
Tb − Ta
(Eqn. 1)
The radial specimen in the HT12 apparatus consists
of a disk with the inside radius R1 = 5 mm, the
outside radius R0 = 55 mm and thickness h = 3.2
mm. Six thermocouples are located at R1 = 5.7 mm,
R2 = 9.9 mm, R3 = 20.3 mm, R4 = 30.1 mm, R5 =
40.1 mm and R6 = 50.5 mm. The outer diameter of
the disk is cooled with water while electric heater is
located at the disc center.
The heat power
generated can be determined from:
Q = VI
where V is heater voltage, I is heater current.
Experimental Equipment
1.
HT10X Heat Transfer service Unit
2.
HT12 Radial Heat Conduction Accessory
3.
IFD3 interface device
Preliminary procedure
1.
2.
Confirm that the six thermocouples on the HT12 unit are connected to the appropriate sockets
of the service unit, with the labels on the thermocouple leads (T1-T6) matching the labels on
the unit.
Ensure that the cold water supply is connected to the inlet of the pressure regulating valve on
HT12 and that the flexible cooling water outlet tube is directed to a suitable drain.
Experimental procedure
1.
2.
3.
4.
5.
6.
7.
8.
9.
Switch on the main power switch.
Turn on the cooling water and adjust the flow to 1.5 liters/min +/- 0.2 liters/min
Start the computer and bring the HT12 program on
Start data acquisition, recording all temperatures every 10 seconds
Set the heating power to 50% and record data for about 10 minutes
Record all temperatures by hand
Turn the heating power off and continue recording data for about 15 minutes
Stop data acquisition and save the data file
Re-start the software and repeat steps 4-8 for the heating power of 100%
Calculations and Results
1.
2.
3.
4.
5.
6.
7.
Calculate the average heat power Q added by the
heater to the disc (use only data points when the heater
was on) for 50% and 100% power.
For each power setting, graph six curves: T1 through T6
as a function of time (two graphs, 6 curves each).
For each power setting, estimate the steady-state
temperature values T1 through T6 from the two graphs
of point 2 (total of 12 values).
Create a single log/linear plot of steady-state
temperature (deg C) on the linear vertical axis as a
function of radius (mm) on the logarithmic horizontal
axis. Plot data for each power setting and draw two
linear trend lines. The plot should be similar to the one
shown. Estimate uncertainties on temperatures and
radial positions and add them as error bars.
Using the trend line equations, estimate temperature To at the outer periphery of the disk (Ro =
55 mm) for 50% and 100% power setting.
Using the trend line equations (slopes, in particular) and manipulating the equations presented
in the Theory section, calculate the thermal conductivity of the disk material for 50% and 100%
power setting. Compare the two values with each other. Note: An alternative (not as good)
way to calculate k is to use temperature values at any two selected positions. Do not use two
adjacent thermocouples.
Based on thermal conductivity values available in the literature, list most likely materials the
disk is made of.
References
1. Heat transfer unit HT10X manual, Armfiled Inc. Jackson, NJ 08527
2. Radial heat conduction HT12 manual, Armfiled Inc. Jackson, NJ 08527
HT12-304 Radial Heat Conduction – Run 1 Results
Sample
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Elapsed
Time
00:01
00:11
00:21
00:31
00:41
00:51
01:01
01:11
01:21
01:31
01:41
01:51
02:01
02:11
02:21
02:31
02:41
02:51
03:01
03:11
03:21
03:31
03:41
03:51
04:01
04:11
04:21
04:31
04:41
04:51
05:01
05:11
Temp T1
7mm
Temp T2
10mm
Temp T3
20mm
Temp T4
30mm
Temp T5
40mm
Temp T6
50mm
[°C]
[°C]
[°C]
[°C]
[°C]
6.7
6.6
6.7
6.6
6.7
6.7
8.3
10.5
12.7
14.5
16.0
17.4
18.6
19.6
20.5
21.3
21.9
22.5
22.9
23.3
23.8
24.0
24.4
24.7
24.9
25.1
25.3
25.4
25.5
25.6
25.7
25.8
8.9
8.9
8.9
8.9
8.9
8.8
9.4
10.6
11.8
13.0
14.0
14.8
15.6
16.3
16.8
17.4
18.0
18.5
18.6
18.9
19.3
19.5
19.7
19.8
20.2
20.2
20.3
20.5
20.5
20.6
20.8
20.7
8.0
8.1
8.1
8.1
8.1
8.1
8.2
8.9
9.8
10.5
11.4
12.0
12.6
13.2
13.6
13.8
14.2
14.6
14.6
14.9
15.2
15.3
15.3
15.6
15.6
15.7
15.9
16.0
16.0
16.1
16.2
16.2
8.5
8.5
8.4
8.4
8.5
8.5
8.6
8.9
9.5
9.9
10.4
10.8
11.2
11.6
11.8
12.0
12.3
12.5
12.5
12.8
13.0
13.0
13.2
13.2
13.3
13.5
13.5
13.4
13.5
13.5
13.6
13.6
8.4
8.5
8.4
8.5
8.4
8.5
8.5
8.7
8.9
9.2
9.5
9.8
10.0
10.2
10.4
10.5
10.7
10.8
10.8
10.9
11.1
11.1
11.2
11.3
11.2
11.3
11.4
11.4
11.3
11.4
11.5
11.5
Page 1
[°C]
Heater
Voltage
V
[V]
Heater
Current
I
[A]
Water
Flowrate
F
[l/min]
6.9
6.9
6.9
6.9
7.0
6.9
6.8
7.0
7.2
7.4
7.5
7.6
7.9
7.9
8.1
8.2
8.2
8.4
8.4
8.5
8.5
8.5
8.5
8.6
8.5
8.7
8.6
8.7
8.7
8.6
8.7
8.7
0.2
0.2
0.2
0.2
0.2
0.2
11.9
11.9
11.9
11.9
11.9
11.9
11.9
11.9
11.9
11.9
12.0
11.9
11.9
11.9
12.0
12.0
11.9
11.9
11.9
12.0
11.9
12.0
11.9
11.9
11.9
12.0
0.03
0.03
0.03
0.03
0.03
0.14
1.73
1.72
1.72
1.73
1.72
1.73
1.73
1.73
1.74
1.73
1.74
1.74
1.73
1.74
1.73
1.73
1.73
1.74
1.73
1.73
1.73
1.73
1.72
1.74
1.75
1.73
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
Notes
HT12-304 Radial Heat Conduction – Run 1 Results
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
05:21
05:31
05:41
05:51
06:01
06:11
06:21
06:31
06:41
06:51
07:01
07:11
07:21
07:31
07:41
07:51
08:01
08:11
08:21
08:31
08:41
08:51
09:01
09:11
09:21
09:31
09:41
09:51
10:01
10:11
10:21
10:31
10:41
10:51
11:01
11:11
11:21
25.9
26.0
26.0
26.1
26.2
26.2
26.2
26.3
26.3
26.3
26.4
26.3
26.3
26.4
26.3
26.3
26.4
26.5
26.3
26.5
26.5
26.4
26.5
26.4
26.6
26.4
26.5
26.3
24.3
22.1
20.0
18.3
16.8
15.5
14.5
13.6
12.7
20.7
20.9
21.0
21.0
21.1
21.1
21.1
21.2
21.2
21.3
21.3
21.3
21.3
21.3
21.4
21.3
21.4
21.4
21.4
21.4
21.4
21.4
21.5
21.5
21.5
21.5
21.5
21.5
20.7
19.4
18.2
17.1
16.1
15.2
14.6
13.9
13.3
16.1
16.1
16.3
16.3
16.4
16.4
16.4
16.4
16.5
16.5
16.5
16.5
16.6
16.6
16.5
16.6
16.5
16.4
16.7
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.2
15.5
14.6
13.9
13.2
12.6
12.0
11.6
11.1
13.8
13.7
13.7
13.7
13.9
13.7
13.9
13.8
13.7
13.8
13.7
13.9
13.9
13.9
13.9
13.9
14.0
14.0
13.8
13.9
14.0
14.0
14.0
14.1
13.9
14.0
13.9
14.0
13.7
13.3
12.9
12.4
12.0
11.5
11.1
10.8
10.5
11.6
11.6
11.4
11.5
11.6
11.7
11.6
11.7
11.6
11.6
11.6
11.7
11.7
11.6
11.7
11.6
11.6
11.5
11.7
11.7
11.7
11.8
11.7
11.7
11.8
11.7
11.7
11.7
11.6
11.4
11.0
10.9
10.5
10.3
10.2
10.0
9.8
Page 2
8.7
8.6
8.7
8.7
8.8
8.8
8.8
8.7
8.6
8.8
8.8
8.7
8.8
8.8
8.8
8.8
8.8
8.8
8.9
8.7
8.8
8.9
8.8
8.8
8.8
8.8
8.7
8.9
8.9
8.6
8.5
8.5
8.3
8.0
7.9
7.9
7.7
11.9
11.9
12.0
11.9
11.9
11.9
11.9
11.9
11.9
11.9
11.9
11.9
12.0
12.0
11.9
11.9
12.0
11.9
11.9
11.9
11.9
11.9
12.0
12.0
12.0
12.0
11.9
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1.72
1.73
1.73
1.73
1.73
1.73
1.73
1.74
1.72
1.72
1.72
1.72
1.73
1.73
1.73
1.73
1.73
1.73
1.73
1.72
1.73
1.73
1.73
1.72
1.74
1.73
1.74
0.02
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
HT12-304 Radial Heat Conduction – Run 1 Results
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
11:31
11:41
11:51
12:01
12:11
12:21
12:31
12:41
12:51
13:01
13:11
13:21
13:31
13:41
13:51
14:01
14:11
14:21
14:31
14:41
14:51
15:01
15:11
15:21
15:31
15:41
15:51
16:01
16:11
16:21
16:31
16:41
16:51
17:01
17:11
17:21
17:31
12.0
11.4
10.6
10.3
9.9
9.5
9.2
9.0
8.8
8.6
8.2
8.3
8.1
7.9
7.8
7.7
7.6
7.5
7.4
7.4
7.3
7.2
7.3
7.2
7.1
7.2
7.1
7.0
7.1
7.0
7.0
7.0
7.0
7.0
6.8
7.0
6.9
12.8
12.4
12.0
11.8
11.5
11.2
11.0
10.8
10.6
10.4
10.4
10.3
10.2
10.0
9.9
10.0
9.8
9.9
9.8
9.7
9.6
9.7
9.6
9.6
9.5
9.5
9.4
9.4
9.4
9.4
9.4
9.3
9.2
9.3
9.2
9.4
9.3
10.8
10.5
10.3
10.1
9.8
9.7
9.6
9.3
9.2
9.1
9.1
9.0
9.0
8.9
8.7
8.7
8.7
8.7
8.6
8.5
8.5
8.4
8.4
8.5
8.4
8.3
8.4
8.4
8.3
8.3
8.4
8.4
8.5
8.4
8.3
8.2
8.2
10.4
10.2
10.0
9.8
9.6
9.6
9.5
9.3
9.3
9.2
9.2
9.0
9.1
8.9
9.0
8.9
8.8
8.9
8.9
8.8
8.8
8.7
8.8
8.8
8.6
8.8
8.7
8.7
8.7
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.6
9.7
9.6
9.4
9.3
9.2
9.1
9.2
9.0
9.1
8.9
8.9
8.7
8.8
8.8
8.8
8.8
8.7
8.7
8.6
8.7
8.7
8.7
8.7
8.6
8.7
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.5
8.6
Page 3
7.6
7.6
7.5
7.4
7.3
7.3
7.3
7.2
7.2
7.3
7.2
7.2
7.1
7.1
7.1
7.1
7.1
7.1
7.0
7.1
7.0
7.1
7.1
7.0
7.1
7.1
7.1
7.0
7.0
7.0
7.1
7.0
7.0
7.0
7.1
7.0
7.0
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.03
0.03
0.03
0.03
0.03
0.02
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.02
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.02
0.03
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
HT12-304 Radial Heat Conduction – Run 1 Results
107
108
109
110
111
112
17:41
17:51
18:01
18:11
18:21
18:31
6.9
6.8
6.8
6.9
6.9
6.8
9.1
9.2
9.2
9.1
9.2
9.2
8.4
8.3
8.3
8.3
8.3
8.2
8.7
8.6
8.6
8.6
8.6
8.7
8.6
8.5
8.6
8.6
8.5
8.5
Page 4
7.1
7.0
7.0
7.0
7.0
7.1
0.2
0.2
0.2
0.2
0.2
0.2
0.03
0.03
0.03
0.03
0.03
0.03
1.50
1.50
1.50
1.50
1.50
1.50
HT12-304 Radial Heat Conduction – Run 1 Results
Page 5
HT12-304 Radial Heat Conduction – Run 1 Results
Page 6
HT12-304 Radial Heat Conduction – Run 1 Results
Page 7
HT12-304 Radial Heat Conduction – Run 1 Results
Page 8
HT12-304 Radial Heat Conduction – Run 1 Results
Sample
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Elapsed
Time
00:01
00:11
00:21
00:31
00:41
00:51
01:01
01:11
01:21
01:31
01:41
01:51
02:01
02:11
02:21
02:31
02:41
02:51
03:01
03:11
03:21
03:31
03:41
03:51
04:01
04:11
04:21
04:31
04:41
04:51
05:01
05:11
Temp T1
7mm
Temp T2
10mm
Temp T3
20mm
Temp T4
30mm
Temp T5
40mm
Temp T6
50mm
[°C]
[°C]
[°C]
[°C]
[°C]
24.1
31.5
39.5
46.4
52.2
57.3
61.5
65.0
68.2
70.9
73.3
75.3
77.0
78.4
79.6
80.7
81.7
82.5
83.2
83.9
84.4
85.0
85.4
85.7
86.1
86.4
86.7
86.9
87.2
87.4
87.5
87.7
19.5
22.3
26.9
31.2
35.3
38.7
41.8
44.5
46.9
48.9
50.7
52.2
53.6
54.7
56.0
56.9
57.8
58.6
59.3
60.0
60.4
60.9
61.2
61.6
61.9
62.2
62.5
62.6
63.0
63.1
63.3
63.5
15.3
16.6
19.2
22.3
25.1
27.4
29.8
31.6
33.2
34.6
35.7
36.8
37.8
38.5
39.2
39.7
40.2
40.6
41.1
41.5
41.7
42.0
42.3
42.5
42.7
42.9
43.2
43.2
43.5
43.4
43.6
43.7
13.0
13.5
15.0
16.8
18.7
20.3
21.7
23.0
24.0
25.1
26.0
26.8
27.2
27.8
28.1
28.6
29.0
29.3
29.6
29.9
30.1
30.3
30.4
30.5
30.7
30.9
30.9
31.2
31.2
31.3
31.3
31.3
11.0
11.3
12.1
13.2
14.3
15.1
16.1
16.8
17.5
18.3
18.8
19.3
19.6
19.9
20.1
20.4
20.6
21.0
21.1
21.3
21.3
21.5
21.6
21.6
21.8
21.9
22.0
22.1
22.2
22.1
22.2
22.3
Page 9
[°C]
Heater
Voltage
V
[V]
Heater
Current
I
[A]
Water
Flowrate
F
[l/min]
8.5
8.7
9.0
9.6
10.3
10.7
11.4
11.8
12.2
12.7
12.8
13.2
13.3
13.5
13.6
13.8
14.0
14.1
14.1
14.2
14.4
14.3
14.4
14.5
14.6
14.5
14.6
14.6
14.7
14.7
14.7
14.6
23.9
23.9
23.9
23.9
23.9
24.0
23.9
23.9
23.9
23.9
23.9
23.9
24.0
24.0
24.0
24.0
24.0
23.9
23.9
23.9
23.9
23.9
23.9
23.9
23.9
24.0
23.9
23.9
24.0
24.0
23.9
24.0
3.67
3.64
3.65
3.65
3.67
3.63
3.66
3.64
3.65
3.63
3.65
3.65
3.66
3.63
3.66
3.63
3.66
3.63
3.63
3.63
3.66
3.63
3.66
3.64
3.64
3.64
3.66
3.63
3.66
3.65
3.64
3.63
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
Notes
HT12-304 Radial Heat Conduction – Run 1 Results
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
05:21
05:31
05:41
05:51
06:01
06:11
06:21
06:31
06:41
06:51
07:01
07:11
07:21
07:31
07:41
07:51
08:01
08:11
08:21
08:31
08:41
08:51
09:01
09:11
09:21
09:31
09:41
09:51
10:01
10:11
10:21
10:31
10:41
10:51
11:01
11:11
11:21
87.8
87.9
88.1
88.2
88.3
88.4
88.4
88.6
88.5
88.7
88.7
88.8
88.9
88.9
88.7
88.9
88.9
88.9
89.0
89.1
89.0
89.0
88.8
89.0
89.0
89.0
89.1
85.1
75.1
66.0
58.0
51.2
45.4
40.5
36.2
32.5
29.3
63.5
63.6
63.8
63.8
64.0
64.0
64.1
64.3
64.4
64.3
64.4
64.4
64.3
64.5
64.4
64.5
64.5
64.5
64.5
64.5
64.4
64.5
64.5
64.5
64.5
64.5
64.4
63.2
57.7
51.9
46.5
41.7
37.8
34.3
31.4
28.8
26.7
43.8
43.9
43.9
43.9
44.0
44.1
44.1
44.1
44.2
44.2
44.2
44.2
44.4
44.3
44.4
44.4
44.2
44.4
44.5
44.4
44.5
44.4
44.5
44.6
44.4
44.5
44.6
44.3
41.5
37.9
34.2
30.9
28.2
25.6
23.5
21.8
20.2
31.4
31.4
31.7
31.4
31.6
31.6
31.6
31.8
31.6
31.8
31.6
31.8
31.8
31.8
31.9
31.9
31.9
31.9
32.0
32.0
32.1
32.1
32.0
32.1
32.0
32.1
32.0
32.0
30.8
28.5
26.3
24.1
22.2
20.5
19.0
17.8
16.8
22.4
22.2
22.4
22.3
22.2
22.4
22.4
22.6
22.4
22.5
22.3
22.6
22.4
22.3
22.3
22.4
22.4
22.5
22.4
22.5
22.5
22.5
22.6
22.6
22.6
22.4
22.6
22.5
22.0
20.8
19.4
18.1
16.8
15.8
14.8
14.1
13.5
Page 10
14.7
14.7
14.6
14.8
14.7
14.8
14.7
14.8
14.8
14.6
14.8
14.8
14.7
14.8
14.7
14.8
14.7
14.7
14.7
14.8
14.7
14.7
14.7
14.6
14.7
14.7
14.7
14.7
14.6
13.9
13.2
12.4
11.8
11.1
10.6
10.2
9.8
24.0
24.0
24.0
23.9
24.0
23.9
23.9
24.0
23.9
23.9
23.9
23.9
23.9
24.0
24.0
24.0
23.9
24.0
23.9
24.0
23.9
23.9
24.0
23.9
24.0
23.9
24.0
0.2
0.2
0.3
0.2
0.2
0.2
0.2
0.2
0.2
0.3
3.65
3.66
3.66
3.65
3.64
3.65
3.66
3.66
3.64
3.65
3.63
3.63
3.64
3.66
3.66
3.65
3.64
3.64
3.64
3.65
3.64
3.64
3.65
3.64
3.64
3.64
3.67
0.03
0.03
0.04
0.03
0.03
0.03
0.03
0.03
0.04
0.03
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
HT12-304 Radial Heat Conduction – Run 1 Results
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
11:31
11:41
11:51
12:01
12:11
12:21
12:31
12:41
12:51
13:01
13:11
13:21
13:31
13:41
13:51
14:01
14:11
14:21
14:31
14:41
14:51
15:01
15:11
15:21
15:31
15:41
15:51
26.5
24.1
22.0
20.2
18.8
17.3
16.1
15.1
14.3
13.4
12.7
12.1
11.6
11.1
10.6
10.2
10.0
9.7
9.4
9.2
9.0
8.9
8.6
8.4
8.3
8.2
8.1
24.8
23.2
21.9
20.6
19.5
18.8
17.8
17.1
16.4
15.8
15.4
14.9
14.6
14.3
14.0
13.6
13.4
13.2
12.9
12.6
12.6
12.3
12.2
12.1
12.0
11.9
11.7
18.8
17.7
16.7
15.8
15.0
14.4
13.8
13.2
12.7
12.4
12.0
11.7
11.4
11.2
10.9
10.8
10.6
10.4
10.4
10.2
10.1
9.9
9.9
9.8
9.7
9.5
9.6
15.8
15.0
14.4
13.8
13.2
12.6
12.4
11.8
11.7
11.4
11.1
10.9
10.7
10.6
10.4
10.4
10.3
10.1
10.0
10.0
9.9
9.8
9.7
9.6
9.5
9.5
9.5
12.9
12.4
12.0
11.6
11.2
10.9
10.7
10.5
10.2
10.2
10.0
9.8
9.7
9.6
9.5
9.5
9.4
9.2
9.2
9.0
9.0
9.0
9.0
8.8
8.9
8.8
8.8
Page 11
9.4
9.1
8.8
8.6
8.5
8.3
8.2
8.0
7.9
7.8
7.8
7.6
7.5
7.4
7.4
7.4
7.3
7.3
7.2
7.3
7.2
7.1
7.1
7.1
7.1
7.0
7.0
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.2
0.2
0.2
0.2
0.2
0.2
0.04
0.03
0.03
0.03
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.04
0.03
0.03
0.03
0.03
0.03
0.03
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
HT12-304 Radial Heat Conduction – Run 1 Results
Page 12
HT12-304 Radial Heat Conduction – Run 1 Results
Page 13
HT12-304 Radial Heat Conduction – Run 1 Results
Page 14
Temperature vs. Time @ 50% Power
30.0
Temperature (°C)
25.0
20.0
T1
T2
15.0
T3
10.0
T4
T5
5.0
T6
0.0
00:00
02:53
05:46
08:38
11:31
14:24
17:17
20:10
Time (mm:ss)
Temperature (°C)
Temperature vs. Time @ 100% Power
100.0
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0
0.0
00:00
T1
T2
T3
T4
T5
T6
02:53
05:46
08:38
11:31
Time (mm:ss)
14:24
17:17
ME 304
Session # 4, Exp. #7
Venturi and Orifice Flow Meters
Performed by:
Submitted by:
Date:
Report Evaluation:
Technical Content: (%)
Writing (%)
Combined Score:
Comments:
Background and Theory
This laboratory investigates two types of flow meters that are commonly used in industry:
Venturi flow meter and orifice flow meter. The two flow meters represent so called
obstruction type flow meters, which measure flow rate indirectly by measuring the
pressure loss across a calibrated obstruction. In this way, a more difficult (and more
expensive) flow measurement is replaced with an easier (and less expensive) pressure
measurement. This is especially true for flow in pipes of large diameter.
The objective of this experiment is to measure the pressure drop P across the two flow
meters at various flow rates Q and to determine the calibration curves Q(P).
Principally, any calibrated obstruction could be used as a flow meter by measuring the
pressure drop pm across the obstruction. The most common obstructions used for this
purpose are Venturi nozzle, flow nozzle and orifice [1]. The flow rate through these
devices can be determined from [2]:
Q=
CA2
2p m
1 − ( A2 / A1 ) 2

(Eq. 1)
where A1 is the cross-sectional area before obstruction, A2 is the area at the smallest diameter, and
C is an empirical discharge coefficient.
2
Experimental Setup and Procedure
Schematic of the experimental setup used is presented in Figure 1. In the experiment,
centrifugal pump 5 drew water from water tank 6 and pumped it along the path indicated
with arrows. Valves 10, 11, 12, 16 and 44 remained fully open. Flow rate Q was
adjusted to the desired value using valve 52 and flow meter 5a, and pressure drop across
the orifice flow meter 7 and the Venturi flow meter 8 was measured with differential
pressure gages (not shown). The measurements were collected at eight values of flow
rate, ranging from 2 GPM to 12 GPM.
5a
Figure 1 Schematic of the experimental setup used.
3
Experimental Results
All experimental results are presented in Table A- 1 in the Appendix and the averaged
values for each flow rate are listed in Table 1. All values in Table 1 were converted to SI
units and are presented in Table 2.
Table 1 Averaged Measured Values
Q
(GPM)
2
4
6
7
8
9
10
12
ΔPV
(mbar)
1.0
7.4
18.1
22.9
31.0
39.2
48.3
57.9
Table 2 Averaged Measured Values in SI units
ΔPO
(mbar)
0.4
2.6
6.2
6.6
10.3
12.7
17.3
21.5
Q
(m3/s)
ΔPV
(Pa)
ΔPO
(Pa)
0.000126
100
40
0.000252
740
260
0.000379
1810
620
0.000442
2290
660
0.000505
3100
1030
0.000568
3920
1270
0.000631
4830
1730
0.000757
5790
2150
The data of Table 2 was used to create Figure 2, which graphs two calibration curves:
one for the Venturi flow meter Q(PV) and the other for the orifice flow meter Q(PO).
0.0008
0.0007
0.0005
3
Q (m /s)
0.0006
0.0004
Venturi
0.0003
Orifice
0.0002
0.0001
0
0
1000
2000
3000
4000

Purchase answer to see full
attachment

error: Content is protected !!